مجلة العلوم الإنسانية العربية المجلد (٤) العدد (٢) الإصدار الثالث عشر (٢٠٢٣ (١٩-١٩)

The Jordan homomorphisms of JC-algebra Tensor Product

Fadwa Muhammad Algamdei Lecturer, Department of Mathematics, Umm Alqura University, Sadia Arabia PHD student, King Abdulaziz University Published on: 15 June 2023

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Abstract

An algebra homomorphism is a map that preserves the algebra operations. In this study, we consider the finite and infinite tensor products of JC-algebras. The main results as follows: we show how Jordan homomorphisms of the component JC-algebras can be combined form Jordan to homomorphisms of the JC-algebra tensor product. Also, we explain that the relation between the (C^* -algebra) homomorphisms of C*-algebra tensor product and Jordan homomorphisms of JC-algebra tensor product by using universal enveloping C*-algebra.

Keywords: C*-algebra, JC-algebra, universal enveloping C*-algebra,

homomorphism, tensor products of C*-algebras and JC-algebras.

* Introduction

A C*-algebra *A* is a Banach *algebra which satisfied :-

 $||x^*x|| = (||x||)^2$, $\forall x \in A$. For example : Let *H* be a complex Hilpert space. Then the space B(H) of all bounded linear mappings on *H* with the norm : $||T|| = \sup\{||T\xi|| : \xi \in H; ||\xi|| = 1\}, \forall T \in B(H)$ is a C*-algebra.

Let *H* be a complex Hilpert space and $B(H)_{sa}$ is a self-adjoint part of the space B(H). Then *B* is a JCalgebra if and only if it is a real Jordan Banach subalgebra of $B(H)_{sa}$.

Kadison and Ringrose (1986) characterized the (C*-algebra)

homomorphisms of the tensor product of C*-algebras and the (C*-algebra) isomorphisms of the infinite tensor products of C*-algebras. Olsen an Stormer (1984) characterized the universal enveloping C*-algebra of a JC-algebra. Jamjoom (1994) defined the JC-algebra tensor product and she characterized the universal enveloping C*-algebra of the JC-algebra tensor product. Jamjoom (1997) defined the infinite tensor products of JC-algebras and she characterized the universal enveloping C*-algebra of the infinite products of JC-algebras.

Our purpose in this study is to give a characterization of Jordan homomorphisms of two cases:-

Case 1: The finite tensor products of JC -algebras.

Case 2 : The infinite tensor products of JC-algebras.

* Methodology

We use the mathematical proofs for obtaining desired results.

* Results

We define (C*-algebra) and Jordan homomorphisms as follows:-

Definition 1.

(i) Let A and B be C*-algebras, a φ from *A* into mapping В is (C*-algebra described as а) if it homomorphism is а homomorphism (that is, it is linear ,

multiplicative, that and carries the unit of *A* onto *B*) with the additional property that $\varphi(x^*) = \varphi(x)^*$, $\forall x \in A$. If, further, φ is one -to- one, it is described as a (C*-algebra) isomorphism. (Kadison and Ringrose, 1983)

(ii) Let *A* and *B* be JC-algebras, a Jordan homomorphism $\varphi: A \xrightarrow{into} B$ is a linear mapping such that $\varphi(a \circ b) = \varphi(a) \circ \varphi(b)$ for each $a, b \in A$.

Jamjoom (1994) constructed the tensor products of JC-algebras as follows:-

Definition 2.

First: Given any pair of JC-algebras A, B and any C*-norm β on $C^*(A) \otimes C^*(B)$. We define $J(A \otimes B)$ to be the real Jordan subalgebra of $C^*(A) \otimes C^*(B)$ generated by $A \otimes B$. **Second :** We define $JC(A \otimes_{\beta} B)$ to be

the completion of $J(A \otimes B)$ in

 $C^*(A) \otimes_{\beta} C^*(B).$

Third: It follows that $JC(A \otimes_{\beta} B)$ is the JC-subalgebra of $(C^*(A) \otimes_{\beta} C^*(B))_{sa}$ generated by $A \otimes B$.

We call that $JC(A \otimes_{\beta} B)$ the JC-algebra tensor product of A and B with respect to β .

Jamjoom (1994) characterized the universal enveloping C*-algebra of the JC-algebra tensor product with respect to the minimum C*-crossnorm as follows:-

Corollary 3.

Let *A* and *B* be JC-algebras. Then:-

 $C * (JC (A \otimes_{\min} B)) = C * (A) \otimes_{\min} C * (B).$

We can see (Kadison and Ringrose, 1986, Section 11-4) for defining the infinite tensor products of C*-algebras. Jamjoom (1997) defined the infinite tensor products of JCalgebras as follows:-

Definition 4.

First: Let $\{A_i : i \in I\}$ be an infinite family of JC-algebras (not necessarily unitals) and let $F = \{F \subseteq I : F \text{ is finite}\}$ and F = is directed by the inclusion relation \subseteq .

Second: For each $F \in F$, we can associate the JC-algebra tensor product $A_F = JC \left(\bigotimes_{\min} A_i \right)_{i \in F}$ of the finite family $\{A_i : i \in F\}$ which is the JC-subalgebra of $\left(\bigotimes_{\min} C^*(A_i) \right)_{i \in F}$ generated by $\left(\bigotimes A_i \right)_{i \in F}$.

Third : Now, we construct a direct system of JC-algebras as follows:-

If $F, G \in F^{\pm}$ and $F \subseteq G$, then by Corollary 3 and the associativity of the tensor product, there is a natural Jordan isomorphism

 $\sigma_{GF} : JC \left(A_F \otimes_{\min} A_{G \setminus F} \right) \xrightarrow{onto} A_G. Also,$ the equation :

 $\alpha_{GF}(x) = \text{strong} \quad \text{limit} \quad \sigma_{GF}(x \otimes v_{\beta})$ $(x \in A_F)$

where $\{v_{\beta}\}$ is an approximate identity of $A_{G\zeta F}$, defines a Jordan homomorphism

from A_F into A_G . Finally, if $F,G,H \in F$ with $F \subseteq G \subseteq H$, then $\alpha_{HF} = \alpha_{HG} \circ \alpha_{GF}$,

hence the family $\{A_F : F \in F \xrightarrow{1}$ with the Jordan homomorphism α_{GF} is a directed system of JC-algebras.

Fourth : The JC-direct limit, say A of $\{A_F, \alpha_{GF}\}$ exists and is a JC-algebra, called the tensor product of the infinite family $\{A_i : i \in I\}$ of JC-algebras, and is denoted by $JC(\bigotimes_{\min} A_i)_{i \in I}$. In other word,

$$A = \xrightarrow{\lim} A_F = JC \left(\bigotimes_{\min} A_i \right)_{i \in I}.$$

* Theorem 5. (Jamjoom, 1997) Let $\{A_i : i \in I\}$ be the family of JCalgebras. Then

$$C * \left(JC \left(\bigotimes_{\min} A_i \right)_{i \in I} \right) = \left(\bigotimes_{\min} C * \left(A_i \right) \right)_{i \in I}$$

Now, Kadison and Ringrose (1986) characterized (C*-algebra) homomorphisms of the C*-algebra tensor product and (C*-algebra) isomorphisms of infinite -tensorproduct C*-algebras as follows:

* Proposition 6.

Suppose that, for i = 1,...,n ($n \in \bullet$), A_i and B_i are C*algebras, and $\varphi_i : A_i \xrightarrow{into} B_i$ is a (C*-algebra) homomorphism. Then there is a (C*-algebra) homomorphism

 $\varphi: A_1 \otimes_{\min} \cdots \otimes_{\min} A_n \xrightarrow{\text{into}} B_1 \otimes_{\min} \cdots \otimes_{\min} B_n$, uniquely determined by the condition:

$$\varphi(x_1 \otimes \cdots \otimes x_n) = \varphi_1(x_1) \otimes \cdots \otimes \varphi_n(x_n) \quad (x_1 \in \mathbf{X} \otimes \mathbf{Y} \otimes \mathbf{Y}$$

* Remark 7.

The(C*-algebra)homomorphism φ occurringproposition6isdenoted $\varphi_1 \otimes_{\min} \cdots \otimes_{\min} \varphi_n$.

* Proposition 8.

Suppose that $\{A_i : i \in I\}$ and $\{B_i : i \in I\}$ are families of C*-algebras, $A = (\bigotimes_{\min} A_i)_{i \in I}$ and $B = (\bigotimes_{\min} B_i)_{i \in I}$. Let A(i) denote the canonical image of A_i in A, B(i) that of B_i in B. (i) If A_i is (C*-algebra) isomorphic to B_i for each $i \in I$, then A is (C*algebra) isomorphic to B. (ii) If θ_i is a (C*-algebra)

isomorphism from A(i) onto B(i)for each $i \in I$, there is a (C*-algebra) isomorphism θ from A onto B, such that for each $i \in I$.

* Remark 9.

The (C*-algebra) isomorphism θ occurring in proposition 8(ii) is denoted by $\left(\bigotimes_{\min} \theta_i \right)_{i \in I}$.

* Discussion and Conclusions

Now we show how Jordan homomorphisms of component JCalgebras A_1 and A_2 can be combined to form Jordan homomorphisms of $JC(A_1 \otimes_{\min} A_2)$ as follows:-

* Proposition 10.

Suppose that, for $i = 1, 2, A_i$ and B_i are JC-algebras, and

$$\varphi_i: A_i \longrightarrow B_i$$

is a Jordan homomorphism. Then there is a Jordan homomorphism $\varphi: JC(A_1 \otimes_{\min} A_2) \xrightarrow{into} JC(B_1 \otimes_{\min} B_2),$ uniquely determined by the condition:- $\varphi(a_1 \otimes a_2) = \varphi_1(a_1) \otimes \varphi_2(a_2) \quad (a_1 \in A_1, a_2 \in A_2),$ (see diagram (1)).

Proof. Suppose that for i = 1, 2, $\varphi_i : A_i \xrightarrow{\text{into}} B_i$ is a Jordan homomorphism. Since A_i and B_i are JC-algebras, then the enveloping C*-algebras $C^*(A_i)$ and $C^*(B_i)$

exist and are unique by (Olsen an Stormer, 1984, Theorem 7.1.8). Hence $\varphi_i : A_i \xrightarrow{into} B_i$ extends to a (C*-algebra) homomorphism $\varphi_i^* : C * (A_i) \xrightarrow{into} C * (B_i)$ by (Olsen an Stormer, 1984, Theorem 7.1.8). Now from Corollary 3, we have $C * (JC (A_1 \otimes_{\min} A_2)) = C * (A_1) \otimes_{\min} C * (A_2),$ $C * (JC (B_1 \otimes_{\min} B_2)) = C * (B_1) \otimes_{\min} C * (B_2).$

Hence by Proposition 6, there is a (C*-algebra) homomorphism $\varphi^*: C*(A_1) \otimes_{\min} C*(A_2) \xrightarrow{into} C*(B_1) \otimes_{\min} C$, uniquely determined by the condition :

 $\varphi^{*}(x_{1} \otimes x_{2}) = \varphi^{*}_{1}(x_{1}) \otimes \varphi^{*}_{2}(x_{2}) \quad (x_{1} \in C^{*}(A_{1}), x_{2} \in C^{*}(A_{2})).$ Then the restriction φ , (say), of φ^{*} to $JC \left(A_{1} \otimes_{\min} A_{2}\right)$ has the following : (i) $\varphi = \varphi^{*} \left| JC \left(A_{1} \otimes_{\min} A_{2}\right) \right|$ is a Jordan homomorphism from $JC \left(A_{1} \otimes_{\min} A_{2}\right)$ to $JC \left(B_{1} \otimes_{\min} B_{2}\right)$ because $JC \left(A_{1} \otimes_{\min} A_{2}\right)$ is a JC-subalgebra of $C^{*}(A_{1}) \otimes_{\min} C^{*}(A_{2})$ and $\varphi \left(JC \left(A_{1} \otimes_{\min} A_{2}\right)\right) \subseteq JC \left(\varphi_{1}(A_{1}) \otimes_{\min} \varphi_{2}(A_{2})\right)$ $\subseteq JC \left(B_{1} \otimes_{\min} B_{2}\right),$ (ii) $\varphi(a_{1} \otimes a_{2}) = \varphi_{1}(a_{1}) \otimes \varphi_{2}(a_{2}) \quad (a_{1} \in A_{1}, a_{2} \in A_{2}).$

* Remark 11.

The Jordan homomorphism φ occurring in proposition 10 is denoted by $\varphi_1 \otimes_{\min} \varphi_2$. Note that if A, B and Care JC-algebras, then $C*(JC(A \otimes_{\min} B) \otimes_{\min} C) = C*(JC(A \otimes_{\min} B)) \otimes_{\min} C*(C)$ $= C*(A) \otimes_{\min} C*(B) \otimes_{\min} C*(C).$ Therefore

 $JC(JC(A \otimes_{\min} B) \otimes_{\min} C)$ is the JCalgebra $JC(A \otimes_{\min} B \otimes_{\min} C)$

generated by $A \otimes B \otimes C$ in $C^{*}(A) \otimes_{\min} C^{*}(B) \otimes_{\min} C^{*}(C)$. Then we have the following:-

* Corollary 12.

Suppose that, for i = 1,...,n $(n \in \bullet)$, A_i and B_i are JCalgebras, and $\varphi_i : A_i \xrightarrow{\text{into}} B_i$ is a Jordan homomorphism. Then there is a Jordan homomorphism $\varphi: JC(A_1 \otimes_{\min} \cdots \otimes_{\min} A_n) \xrightarrow{\text{into}} JC(B_1 \otimes_{\min} \cdots \otimes_{\min} B_n)$, uniquely determined by the condition:-

 $\varphi(a_1 \otimes \cdots \otimes a_n) = \varphi_1(a_1) \otimes \cdots \otimes \varphi_n(a_n) \quad (a_1 \in A_1, \dots, a_n \in A_n).$

We now consider certain Jordan homomorphisms of infinite-tensorproduct JC-algebras as follows:

* Proposition 13.

Suppose that $\{A_i : i \in I\}$ and $\{B_i : i \in I\}$ are infinite families of JCalgebras. Then, if $\theta_i : A_i \xrightarrow{\text{into}} B_i$ is a Jordan homomorphism for each $i \in I$, then there is a Jordan homomorphism $\begin{aligned} \theta : JC \left(\otimes_{\min} A_i \right)_{i \in I} \xrightarrow{\text{into}} JC \left(\otimes_{\min} B_i \right)_{i \in I} \\ \text{such that } \theta \Big| A_i = \theta_i \quad (i \in I) \\ (\text{ see diagram 2 }). \end{aligned}$

Diagram (2).

Proof. Suppose that $i \in I$ $\theta_i : A_i \xrightarrow{into} B_i$ is a arbitrary and Jordan homomorphism. Since A_i and the JC-algebras, then B_i are enveloping C*-algebras $C^*(A_i)$ and $C^{*}(B_{i})$ exist and are unique by (Olsen an Stormer, 1984, Theorem 7.1.8). Hence $\theta_i : A_i \xrightarrow{\text{into}} B_i$ extends to a (C*-algebra) homomorphism $\theta_i^*: C^*(A_i) \xrightarrow{into} C^*(B_i)$ by (Olsen an Stormer, 1984, Theorem 7.1.8). Now because $C^*(A_i)$ and $C^*(B_i)$ are C*algebras. Then we can use Proposition 8(i) as follows:-

By Theorem 5, we have:-

$$C * \left(JC \left(\bigotimes_{\min} A_i \right)_{i \in I} \right) = \left(\bigotimes_{\min} C * \left(A_i \right) \right)_{i \in I},$$

$$C * \left(JC \left(\bigotimes_{\min} B_i \right)_{i \in I} \right) = \left(\bigotimes_{\min} C * \left(B_i \right) \right)_{i \in I}.$$

Hence by Proposition 8(I), there is a (C*-algebra) homomorphism

 $\theta^* : \left(\otimes_{\min} C * (A_i) \right)_{i \in I} \longrightarrow \left(\otimes_{\min} C * (B_i) \right)_{i \in I}$

such that $\theta^* | C^*(A_i) = \theta_i^*$ for each $i \in I$. Then the restriction θ , (say), of θ^* to $JC(\bigotimes_{\min}A_i)_{i\in I}$ has the following: (i) $\theta = \theta^* | JC(\bigotimes_{\min}A_i)_{i\in I}$ is a Jordan homomorphism from $JC(\bigotimes_{\min}A_i)_{i\in I}$ into $JC(\bigotimes_{\min}B_i)_{i\in I}$, because $JC(\bigotimes_{\min}A_i)_{i\in I}$ is a JC-subalgebra of $(\bigotimes_{\min}C^*(A_i))_{i\in I}$ and $\theta(JC(\bigotimes_{\min}A_i)_{i\in I}) \subseteq JC(\bigotimes_{\min}\theta_i(A_i))_{i\in I} \subseteq JC(\bigotimes_{\min}B_i)_{i\in I})$ (ii) $\theta | A_i = \theta_i$ $(i \in I)$. +

* Recommendations

We can use the Propositions 10 and 13 for any problems about Jordan homomorphisms of the finite tensor products of JC -algebras and the infinite tensor products of JC-algebras.

* References

Jamjoom,F.B.(1994).On the tensor products of JC-algebras. *Quart.J.Math.Oxford*,45,77-90.

Jamjoom,F.B.(1997).Infinite tensor products of JC-algebras. Journal of Natural Geometry,11,131-138.

Kadison, R.V.&

Ringrose, J.R. (1983). Fundamen tals of the theory of operator algebras I. New York: Academic Press.

- Kadison,R.V.& Ringrose, J. R.(1986).Fundamentals of the theory of operator algebras II. New York: Academic Press.
- Olsen, H. H.(1983).On the structure and tensor products of JCalgebras. *Can,J.Math*,35,1095-1074.
- Olsen, H. H. & Stomer, E. (1984).Jordan operator algebra. Pitman.
- Takesaki, M.(1997).*Theory of* operator algebras I. Springer-Verlag.